单例模式作为对象的一种创建模式,它的作用是确保某一个类在整个系统中只有一个实例,而且自行实例化并向整个系统提供这个实例。
由此可见,单例模式具有以下的特点:
- 单例类只能有一个实例。
- 单例类必须自己创建自己的唯一的实例。
- 单例类必须给所有其他对象提供这一实例。
由于Java语言的特点,使得单例模式在Java语言的实现上有自己的特点。这些特点主要表现在单例类如何将自己实例化。
饿汉式单例类
饿汉式单例类是在Java语言里实现起来最为简便的单例类。其源代码如下:
|
|
由Java语言类的初始化顺序可知,在这个类被加载时,静态变量会被初始化,此时类的私有构造会被调用。这时候,单例类的唯一实例就被创建出来了。
Java语言中单例类的一个最重要的特点是类的构造是私有的,从而避免外界使用构造子直接创建出任意多该类的实例。值得指出的是,由于构造是私有的,因此该类不能被继承。
懒汉式单例类
与饿汉式单例类相同之处是,懒汉式单例类的构造也是私有的。而与饿汉式单例类不同的是,懒汉式单例类在第一次被引用时将自己实例化。在懒汉式单例类被加载时,不会将自己实例化。其源代码如下所示:
|
|
对singleton对象使用volatile关键字进行限制,保证其对所有线程的可见性,并且禁止对其进行指令重排序优化; 静态工厂方法中synchronized关键字提供的同步是必须的,否则当多个线程同时访问该方法时,无法确保获得的总是同一个实例。然而我们也看到,在所有的代码路径中,虽然只有第一次引用的时候需要对instance变量进行实例化,但是synchronized同步机制要求所有的代码执行路径都必须先获取类锁。在并发访问比较低时,效果并不显著,但是当并发访问量上升时,这里有可能会成为并发访问的瓶颈。
双重检查锁
|
|
这种写法被称为“双重检查锁”,顾名思义,就是在getSingleton()方法中,进行两次null检查。看似多此一举,但实际上却极大提升了并发度,进而提升了性能。为什么可以提高并发度呢?就像上文说的,在单例中new的情况非常少,绝大多数都是可以并行的读操作。因此在加锁前多进行一次null检查就可以减少绝大多数的加锁操作,执行效率提高的目的也就达到了。
坑: volatile这个关键字。其实这个关键字有两层语义。第一层语义就是可见性。可见性指的是在一个线程中对该变量的修改会马上由工作内存(Work Memory)写回主内存(Main Memory),所以会马上反应在其它线程的读取操作中.volatile的第二层语义是禁止指令重排序优化。我们写的代码(尤其是多线程代码),由于编译器优化,在实际执行的时候可能与我们编写的顺序不同。编译器只保证程序执行结果与源代码相同,却不保证实际指令的顺序与源代码相同,引入多线程这种乱序就可能导致严重问题.
禁止指令重排优化这条语义直到jdk1.5以后才能正确工作。此前的JDK中即使将变量声明为volatile也无法完全避免重排序所导致的问题。所以,在jdk1.5版本前,双重检查锁形式的单例模式是无法保证线程安全的。
静态内部内
这种单例模式的写法,是著名的《Java Concurrency in Practice》一书中介绍对象的安全发布时介绍的。我们先来看它的源代码。
|
|
要理解上面这种单例类的写法,你需要先学习一些关于Java虚拟机如何初始化一个类的知识。
在java虚拟机中,类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括了:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段。其中,验证、准备和解析三个部分统称为连接(Linking)。
加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也被称为动态绑定或晚期绑定)。
什么情况下需要开始类加载的第一个阶段:加载。虚拟机规范中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。但是对于初始化阶段,虚拟机规范则是严格规定了有且只有四种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):
1)遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这四条字节码指令最常见的Java代码场景是:使用new关键字实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
2)使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
3)当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
4)当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
这四种场景中的行为称为对一个类进行主动引用,除此之外所有引用类的方式,都不会触发类的初始化,被称为被动引用。以下是三个例子:
1)通过子类引用父类的静态字段,不会导致子类初始化。
2)通过数组定义来引用类,不会触发此类的初始化。
3)常量在编译阶段会存入调用类的常量池,本质上没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。
(以上摘自《深入理解Java虚拟机》)
从上面介绍的知识可以知道,JVM将推迟ResourceHolder类的初始化,直到第一个代码访问路径调用getResource()方法。此时,由于ResourceHolder.resource是一个读取静态字段的主动引用,虚拟机将第一次加载ResourceHolder类,并且通过一个静态变量来初始化Resource实例。而其他访问getResource()方法的代码路径,并不需要同步。
不需要额外的同步,但是又能确保对象可见性的正确发布,这是由Java的虚拟机规范所决定的!上面这种单例模式的写法,体现出对虚拟机规范的深刻理解,实在是专家级别的写法。
注意:上面提到的所有实现方式都有两个共同的缺点:
- 都需要额外的工作(Serializable、transient、readResolve())来实现序列化,否则每次反序列化一个序列化的对象实例时都会创建一个新的实例。
- 可能会有人使用反射强行调用我们的私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。
枚举写法(推荐)
只能包含单个元素的枚举类型
|
|
使用枚举除了线程安全和防止反射强行调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象。因此,Effective Java推荐尽可能地使用枚举来实现单例。
调用方式:Singleton.INSTANCE.getName();
最后,不管采取何种方案,请时刻牢记单例的三大要点:
- 线程安全
- 延迟加载
- 序列化与反序列化安全